Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3198, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680950

RESUMO

With the further miniaturization and integration of multi-dimensional optical information detection devices, polarization-sensitive photodetectors based on anisotropic low-dimension materials have attractive potential applications. However, the performance of these devices is restricted by intrinsic property of materials leading to a small polarization ratio of the detectors. Here, we construct a black phosphorus (BP) homojunction photodetector defined by ferroelectric domains with ultra-sensitive polarization photoresponse. With the modulation of ferroelectric field, the BP exhibits anisotropic dispersion changes, leading an increased photothermalelectric (PTE) current in the armchair (AC) direction. Moreover, the PN junction can promote the PTE current and accelerate carrier separation. As a result, the BP photodetector demonstrates an ultrahigh polarization ratio (PR) of 288 at 1450 nm incident light, a large photoresponsivity of 1.06 A/W, and a high detectivity of 1.27 × 1011 cmHz1/2W-1 at room temperature. This work reveals the great potential of BP in future polarized light detection.

2.
Sci Adv ; 8(19): eabn1811, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35544556

RESUMO

New-generation infrared detectors call for higher operation temperature and polarization sensitivity. For traditional HgCdTe infrared detectors, the additional polarization optics and cryogenic cooling are necessary to achieve high-performance infrared polarization detection, while they can complicate this system and limit the integration. Here, a mixed-dimensional HgCdTe/black phosphorous van der Waals heterojunction photodiode is proposed for polarization-sensitive midwave infrared photodetection. Benefiting from van der Waals integration, type III broken-gap band alignment heterojunctions are achieved. Anisotropy optical properties of black phosphorous bring polarization sensitivity from visible light to midwave infrared without external optics. Our devices show an outstanding performance at room temperature without applied bias, with peak blackbody detectivity as high as 7.93 × 1010 cm Hz1/2 W-1 and average blackbody detectivity over 2.1 × 1010 cm Hz1/2 W-1 in midwave infrared region. This strategy offers a possible practical solution for next-generation infrared detector with high operation temperature, high performance, and multi-information acquisition.

3.
RSC Adv ; 12(8): 4939-4945, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425495

RESUMO

Flexible optoelectronic devices have numerous applications in personal wearable devices, bionic detectors, and other systems. There is an urgent need for functional materials with appealing electrical and optoelectronic properties, stretchable electrodes with outstanding mechanical flexibility, and gate medium with flexibility and low power consumption. Two-dimensional transition metal dichalcogenides (TMDCs), a novel kind of widely studied optoelectrical material, have good flexibility for their ultrathin nature. P(VDF-TrFE) is a kind of organic material with good flexibility which has been proved to be a well-performing ferroelectric gate material for photodetectors. Herein, we directly fabricated a well-performing photodetector based on ReS2 and P(VDF-TrFE) on a flexible substrate. The device achieved a high responsivity of 11.3 A W-1 and a high detectivity of 1.7 × 1010 Jones from visible to near-infrared. Moreover, with strain modulation, the device's responsivity improved 2.6 times, while the detectivity improved 1.8 times. This research provides a prospect of flexible photodetectors in the near-infrared wavelength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...